<<5678910>>
36.

The solution of the differential equation  $ydx-xdy+3x^{2}y^{2}e^{x^{3}}dx=0$ satisfying y=1 when x=1, is 


A) $y\left( e^{x^{3}}-(1+2e)\right)-x=0$

B) $y\left( e^{x^{3}}+(1-e)\right)+x=0$

C) $y\left( e^{x^{3}}+(1+e)\right)-x=0$

D) $y\left( e^{x^{3}}-(1+e)\right)+x=0$



37.

 If   $\int\frac{2x^{2}}{(2x^{2}+\alpha)(x^{2}+5)}dx=\frac{\sqrt{5}}{3} \tan ^{-1}\frac{x}{\sqrt{5}}-\frac{\sqrt{2}}{3} \tan ^{-1}\frac{x}{\sqrt{2}}+c,$ then $\alpha$ =


A) 1

B) 2

C) 3

D) 4



38.

 The derivative of $\cos h^{-1} x$ with respect to log x at x=5 is 


A) $\frac{5}{\sqrt{26}}$

B) $\frac{1}{\sqrt{26}}$

C) $\frac{1}{2\sqrt{6}}$

D) $\frac{5}{2\sqrt{6}}$



39.

If f(x)  = $\begin{cases}ax+b, & if x\leq 1\\ax^{2}+c ,& if 1<x\leq2 \\ \frac{dx^{2}+1}{x},&if x\geq 2\end{cases}$

is differentiable on R, then ad-bc=


A) 0

B) 1

C) -1

D) 2



40.

The distance between the tangents to the hyperbola  $\frac{x^{2}}{20}- \frac{3y^{2}}{4}$=1 which are parallel to the line x+3y=7 is 


A) $4\sqrt{5}$

B) $\frac{4}{\sqrt{5}}$

C) $\frac{2}{\sqrt{5}}$

D) $2\sqrt{5}$



<<5678910>>